セミナーレポート

ロボットが目で見たものを掴むまで 3次元ビジョンセンサー,認識アルゴリズム,認識と動作のキャリブレーションを組み合わせる三菱電機(株) 堂前 幸康

本記事は、画像センシング展2013にて開催された特別招待講演を記事化したものになります。

3次元ビジョンセンサーで見て,認識アルゴリズムで掴み方を考える

 3次元ビジョンセンサーは対象物体の色(輝度)だけでなく,3次元(奥行き)情報=距離を測ります。3次元センサーは多くの企業から多数の製品が発売されており,得手不得手があります。その中で,距離分解能がサブミクロンオーダーの産業用途の精密計測向け製品は1000万円ほどで比較的高価です。計測方式で多く使われているのが三角測量をベースにしたパターン投光方式で,プロジェクターからドットパターンを投光して計測します。もう1つ,縦スリットをたくさん当てる空間コード化法というやり方がありますが,精度は高いのですが,パターン枚数分,時間がかかります。三菱電機のボストン研究所では,両方の良い部分を融合させた方法を発表しました。そして,開発を進めた結果,3次元ビジョンセンサー「MELFA 3D-VISION」では,生産システムがターゲットとするバラ積みの電気・電子部品を必要な時間と精度で測ることができました。
 次が掴み方を考える認識アルゴリズムです。距離データからの物体の掴み方について,真っ先に浮かぶのは,物体の位置姿勢を認識することです。そのためには,距離データと物体の照合が必要で,例えば物体形状を点の集合で表した点群モデル,もしくは物体形状をエッジの集合で表したエッジモデルを事前に持っておきます。点群モデルの照合は高精度ですが,処理が重く,局所解に陥りやすく,エッジモデルの照合は,処理は軽く,局所解に陥りにくいのですが,高精度化するとモデル数が増えます。
図2 物体の位置姿勢認識処理フロー

図2 物体の位置姿勢認識処理フロー

 そこで,両方のいいとこ取りをして,距離データからエッジ画像を作り,まず最初に作成した2次元エッジ画像群をおおまかにあてはめます(チャンファーマッチング)。そこでは大きな誤差が出るので,次に3次元CADデータを使った点群モデルの照合で精度を出します。こうすることで,速度と精度のバランスの高い認識処理が可能になります(図2)。

<次ページへ続く>

三菱電機(株) 堂前 幸康

2004年
北海道大学工学部システム工学科卒業
2006年
北海道大学大学院情報科学研究科システム情報科学専攻修了
2008年
北海道大学大学院情報科学研究科システム情報科学専攻博士後期課程単位取得退学
2008年
三菱電機株式会社入社、先端技術総合研究所勤務
2012年
北海道大学情報科学博士

アーカイブもっと見る

器用なロボットの実現を目指した3Dセンシング
器用なロボットの実現を目指した3Dセンシング(11/25) 中京大学工学部テニュアトラック助教 秋月 秀一
オムロンのコア技術“Sensing&Control+THINK”の集大成 卓球ロボットFORPHEUS-「人と機械の融和」の実現に向けて-
オムロンのコア技術“Sensing&Control+THINK”の集…(9/25) オムロン(株) 技術・知財本部 センシング研究開発センタ 研究員 中山 雅宗
省演算・省電力AI:SOINNの活用事例
省演算・省電力AI:SOINNの活用事例(9/25) SOINN(株) 代表取締役CEO 長谷川 修
NTTグループが描く未来農業
NTTグループが描く未来農業(7/25) 日本電信電話㈱(NTT) 研究企画部門 プロデュース担当部長 久住 嘉和
QoL向上のためのメディア認識・理解技術
QoL向上のためのメディア認識・理解技術(7/25) 東京大学 大学院情報理工学系研究科 電子情報学専攻 山崎 俊彦

ダウンロード

展示会FAQ